Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
2.
Int J Mol Sci ; 23(22)2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2298126

ABSTRACT

This study is a successor of our previous work concerning changes in the chemokine profile in infection that are associated with different SARS-CoV-2 genetic variants. The goal of our study was to take into account both the virus and the host immune system by assessing concentrations of cytokines in patients infected with different SARS-CoV-2 variants (ancestral Wuhan strain, Alpha, Delta and Omicron). Our study was performed on 340 biological samples taken from COVID-19 patients and healthy donors in the timespan between May 2020 and April 2022. We performed genotyping of the virus in nasopharyngeal swabs, which was followed by assessment of cytokines' concentration in blood plasma. We noted that out of nearly 30 cytokines, only four showed stable elevation independently of the variant (IL-6, IL-10, IL-18 and IL-27), and we believe them to be 'constant' markers for COVID-19 infection. Cytokines that were studied as potential biomarkers lose their diagnostic value as the virus evolves, and the specter of potential targets for predictive models is narrowing. So far, only four cytokines (IL-6, IL-10, IL-18, and IL-27) showed a consistent rise in concentrations independently of the genetic variant of the virus. Although we believe our findings to be of scientific interest, we still consider them inconclusive; further investigation and comparison of immune responses to different variants of SARS-CoV-2 is required.


Subject(s)
COVID-19 , Cytokines , SARS-CoV-2 , Humans , COVID-19/genetics , Cytokines/genetics , Cytokines/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-18/genetics , Interleukin-18/metabolism , Interleukin-27/genetics , Interleukin-27/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , SARS-CoV-2/genetics
3.
J Biophotonics ; 16(7): e202200166, 2023 07.
Article in English | MEDLINE | ID: covidwho-2265562

ABSTRACT

The development of fast, cheap and reliable methods to determine seroconversion against infectious agents is of great practical importance. In the context of the COVID-19 pandemic, an important issue is to study the rate of formation of the immune layer in the population of different regions, as well as the study of the formation of post-vaccination immunity in individuals after vaccination. Currently, the main method for this kind of research is enzyme immunoassay (ELISA, enzyme-linked immunosorbent assay). This technique is sufficiently sensitive and specific, but it requires significant time and material costs. We investigated the applicability of attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy associated with machine learning in blood plasma to detect seroconversion against SARS-CoV-2. The study included samples of 60 patients. Clear spectral differences in plasma samples from recovered COVID-19 patients and conditionally healthy donors were identified using multivariate and statistical analysis. The results showed that ATR-FTIR spectroscopy, combined with principal components analysis (PCA) and linear discriminant analysis (LDA) or artificial neural network (ANN), made it possible to efficiently identify specimens from recovered COVID-19 patients. We built classification models based on PCA associated with LDA and ANN. Our analysis led to 87% accuracy for PCA-LDA model and 91% accuracy for ANN, respectively. Based on this proof-of-concept study, we believe this method could offer a simple, label-free, cost-effective tool for detecting seroconversion against SARS-CoV-2. This approach could be used as an alternative to ELISA.


Subject(s)
COVID-19 , Pandemics , Humans , Spectroscopy, Fourier Transform Infrared/methods , COVID-19/diagnosis , SARS-CoV-2 , Discriminant Analysis , Principal Component Analysis , Ataxia Telangiectasia Mutated Proteins
4.
Int J Environ Res Public Health ; 20(4)2023 Feb 19.
Article in English | MEDLINE | ID: covidwho-2245410

ABSTRACT

Being diverse and widely distributed globally, bats are a known reservoir of a series of emerging zoonotic viruses. We studied fecal viromes of twenty-six bats captured in 2015 in the Moscow Region and found 13 of 26 (50%) samples to be coronavirus positive. Of P. nathusii (the Nathusius' pipistrelle), 3 of 6 samples were carriers of a novel MERS-related betacoronavirus. We sequenced and assembled the complete genome of this betacoronavirus and named it MOW-BatCoV strain 15-22. Whole genome phylogenetic analysis suggests that MOW-BatCoV/15-22 falls into a distinct subclade closely related to human and camel MERS-CoV. Unexpectedly, the phylogenetic analysis of the novel MOW-BatCoV/15-22 spike gene showed the closest similarity to CoVs from Erinaceus europaeus (European hedgehog). We suppose MOW-BatCoV could have arisen as a result of recombination between ancestral viruses of bats and hedgehogs. Molecular docking analysis of MOW-BatCoV/15-22 spike glycoprotein binding to DPP4 receptors of different mammals predicted the highest binding ability with DPP4 of the Myotis brandtii bat (docking score -320.15) and the E. europaeus (docking score -294.51). Hedgehogs are widely kept as pets and are commonly found in areas of human habitation. As this novel bat-CoV is likely capable of infecting hedgehogs, we suggest hedgehogs can act as intermediate hosts between bats and humans for other bat-CoVs.


Subject(s)
Chiroptera , Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Humans , Betacoronavirus , Chiroptera/virology , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Hedgehogs/virology , Molecular Docking Simulation , Moscow , Phylogeny , Russia
5.
Int J Mol Sci ; 24(3)2023 Jan 25.
Article in English | MEDLINE | ID: covidwho-2216335

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for over two years of the COVID-19 pandemic and a global health emergency. Genomic surveillance plays a key role in overcoming the ongoing COVID-19 pandemic despite its relative successive waves and the continuous emergence of new variants. Many technological approaches are currently applied for the whole genome sequencing (WGS) of SARS-CoV-2. They differ in key stages of the process, and they feature some differences in genomic coverage, sequencing depth, and in the accuracy of variant-calling options. In this study, three different protocols for SARS-CoV-2 WGS library construction are compared: an amplicon-based protocol with a commercial primer panel; an amplicon-based protocol with a custom panel; and a hybridization capture protocol. Specific differences in sequencing depth and genomic coverage as well as differences in SNP number were found. The custom panel showed suitable results and a predictable output applicable for the epidemiological surveillance of SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , Gene Library , Genome, Viral
6.
Int J Environ Res Public Health ; 19(21)2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2090158

ABSTRACT

The aggressive infectious nature of SARS-CoV-2, its rapid spread, and the emergence of mutations necessitate investigation of factors contributing to differences in SARS-CoV-2 susceptibility and severity. The role of genetic variations in the human HLA continues to be studied in various populations in terms of both its effect on morbidity and clinical manifestation of illness. The study included 484 COVID-19 convalescents (northwest Russia residents of St. Petersburg). Cases in which the responsible strain was determined were divided in two subgroups: group 1 (n = 231) had illness caused by genovariants unrelated to variant of concern (VOC) strains; and group 2 (n = 80) had illness caused by the delta (B.1.617.2) VOC; and a control group (n = 1456). DNA typing (HLA-A, B, DRB1) was performed at the basic resolution level. HLA-A*02 was associated with protection against infection caused by non-VOC SARS-CoV-2 genetic variants only but not against infection caused by delta strains. HLA-A*03 was associated with protection against infection caused by delta strains; and allele groups associated with infection by delta strains were HLA-A*30, B*49, and B*57. Thus, in northwest Russia, HLA-A*02 was associated with protection against infection caused by non-VOC SARS-CoV-2 genetic variants but not against delta viral strains. HLA-A*03 was associated with a reduced risk of infection by delta SARS-CoV-2 strains. HLA-A*30, HLA-B*49, and HLA-B*57 allele groups were predisposing factors for infection by delta (B.1.617.2) strains.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/genetics , Genotype , HLA-A Antigens
7.
Microorganisms ; 10(8)2022 Aug 20.
Article in English | MEDLINE | ID: covidwho-1997712

ABSTRACT

Following its emergence at the end of 2021, the Omicron SARS-CoV-2 variant rapidly spread around the world and became a dominant variant of concern (VOC). The appearance of the new strain provoked a new pandemic wave with record incidence rates. Here, we analyze the dissemination dynamics of Omicron strains in Saint Petersburg, Russia's second largest city. The first case of Omicron lineage BA.1 was registered in St. Petersburg on 10 December 2021. Rapid expansion of the variant and increased incidence followed. The peak incidence was reached in February 2022, followed by an observed decline coinciding with the beginning of spread of the BA.2 variant. SARS-CoV-2 lineage change dynamics were shown in three categories: airport arrivals; clinical outpatients; and clinical inpatients. It is shown that the distribution of lineage BA.1 occurred as a result of multiple imports. Variability within the BA.1 and BA.2 lineages in St. Petersburg was also revealed. On the basis of phylogenetic analysis, an attempt was made to trace the origin of the first imported strain, and an assessment was made of the quarantine measures used to prevent the spread of this kind of infection.

8.
Int J Mol Sci ; 23(16)2022 Aug 13.
Article in English | MEDLINE | ID: covidwho-1987830

ABSTRACT

BACKGROUND: Infection caused by SARS-CoV-2 mostly affects the upper and lower respiratory tracts and causes symptoms ranging from the common cold to pneumonia with acute respiratory distress syndrome. Chemokines are deeply involved in the chemoattraction, proliferation, and activation of immune cells within inflammation. It is crucial to consider that mutations within the virion can potentially affect the clinical course of SARS-CoV-2 infection because disease severity and manifestation vary depending on the genetic variant. Our objective was to measure and assess the different concentrations of chemokines involved in COVID-19 caused by different variants of the virus. METHODS: We used the blood plasma of patients infected with different variants of SARS-CoV-2, i.e., the ancestral Wuhan strain and the Alpha, Delta, and Omicron variants. We measured the concentrations of 11 chemokines in the samples: CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1ß, CCL7/MCP-3, CCL11/Eotaxin, CCL22/MDC, CXCL1/GROα, CXCL8/IL-8, CXCL9/MIG, CXCL10/IP-10, and CX3CL1/Fractalkine. RESULTS: We noted a statistically significant elevation in the concentrations of CCL2/MCP-1, CXCL8/IL-8, and CXCL1/IP-10 independently of the variant, and a drop in the CCL22/MDC concentrations. CONCLUSIONS: The chemokine concentrations varied significantly depending on the viral variant, leading us to infer that mutations in viral proteins play a role in the cellular and molecular mechanisms of immune responses.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/immunology , Chemokine CXCL10 , Chemokines/blood , Humans , Interleukin-8 , Plasma
9.
Viruses ; 14(5)2022 04 29.
Article in English | MEDLINE | ID: covidwho-1820411

ABSTRACT

Appearing in Wuhan (China) and quickly spreading across the globe, the novel coronavirus infection quickly became a significant threat to global health. The year 2021 was characterized by both increases and decreases in COVID-19 incidence, and Russia was no exception. In this work, we describe regional features in the Northwestern federal district (FD) of Russia of the pandemic in 2021 based on Rospotrebnadzor statistics and data from SARS-CoV-2 genetic monitoring provided by the Saint Petersburg Pasteur Institute as a part of epidemiological surveillance. The epidemiological situation in the studied region was complicated by the presence of the megacity Saint Petersburg, featuring a high population density and its status as an international transport hub. COVID-19 incidence in the Northwestern FD fluctuated throughout the year, with two characteristic maxima in January and November. An analysis of fluctuations in the age structure, severity of morbidity, mortality rates, and the level of population vaccination in the region during the year is given. Assessment of epidemiological indicators was carried out in relation to changes in locally circulating genetic variants. It was seen that, during 2021, so-called variants of concern (VOC) circulated in the region (Alpha, Beta, Delta, Omicron), with Delta variant strains dominating from June to December. They successively replaced the variants of lines 20A and 20B circulating at the beginning of the year. An epidemiological feature of the northwestern region is the AT.1 variant, which was identified for the first time and later spread throughout the region and beyond its borders. Its share of the regional viral population reached 28.2% in May, and sporadic cases were observed until September. It has been shown that genetic variants of AT.1 lineages distributed in Russia and Northern Europe represent a single phylogenetic group at the base of the 20B branch on the global phylogenetic tree of SARS-CoV-2 strains. The progression of the COVID-19 pandemic occurred against the background of a vaccination campaign. The findings highlight the impact of vaccination on lowering severe COVID-19 case numbers and the mortality rate, despite ongoing changes in circulating SARS-CoV-2 genetic variants.


Subject(s)
COVID-19 , COVID-19/epidemiology , Humans , Pandemics , Phylogeny , SARS-CoV-2/genetics
11.
Viruses ; 13(6)2021 05 29.
Article in English | MEDLINE | ID: covidwho-1256668

ABSTRACT

The COVID-19 pandemic, which began in Wuhan (Hubei, China), has been ongoing for about a year and a half. An unprecedented number of people around the world have been infected with SARS-CoV-2, the etiological agent of COVID-19. Despite the fact that the mortality rate for COVID-19 is relatively low, the total number of deaths has currently already reached more than three million and continues to increase due to high incidence. Since the beginning of the pandemic, a large number of sequences have been obtained and many genetic variants have been identified. Some of them bear significant mutations that affect biological properties of the virus. These genetic variants, currently Variants of Concern (VoC), include the so-called United Kingdom variant (20I/501Y), the Brazilian variant (20J/501Y.V3), and the South African variant (20H/501Y.V2). We describe here a novel SARS-CoV-2 variant with distinct spike protein mutations, first obtained at the end of January 2021 in northwest Russia. Therefore, it is necessary to pay attention to the dynamics of its spread among patients with COVID-19, as well as to study in detail its biological properties.


Subject(s)
SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , DNA Mutational Analysis , DNA, Complementary , Genome, Viral , Humans , Models, Molecular , Mutation , Phylogeny , Protein Conformation , Russia , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry
12.
J Med Virol ; 93(3): 1694-1701, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196495

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become pandemic since March 11, 2020. Thus, development and integration in clinics of fast and sensitive diagnostic tools are essential. The aim of the study is a development and evaluation of a one-step quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay (COVID-19 Amp) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection with an armored positive control and internal controls constructed from synthetic MS2-phage-based RNA particles. The COVID-19 Amp assay limit of detection was 103 copies/ml, the analytical specificity was 100%. A total of 109 biological samples were examined using COVID-19 Amp and World Health Organization (WHO)-based assay. Discordance in nine samples was observed (negative by the WHO-based assay) and discordant samples were retested as positive according to the results obtained from the Vector-PCRrv-2019-nCoV-RG assay. The developed COVID-19 Amp assay has high sensitivity and specificity, includes virus particles-based controls, provides the direct definition of the SARS-CoV-2 RdRp gene partial sequence, and is suitable for any hospital and laboratory equipped for RT-qPCR.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , Diagnostic Tests, Routine , Female , Genome, Viral/genetics , Humans , Male , Middle Aged , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL